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APPLICATION O F  A PRESSURE GRADIENT 
METHOD TO AN FEM FLOW ANALYSIS 
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SUMMARY 

A pressure gradient method employing pressure gradients as dependent variables is applied to a 
finite-element-method flow analysis for a two-dimensional incompressible Newtonian fluid flow. In a 
numerical analysis, a triangular element is adopted, a velocity vector and a pressure gradient vector being 
assigned as dependent variables at the nodal points. Velocity and pressure gradient are interpolated linearly 
in space, and a discretizing formulation can be made using a suitably selected weighting function. An 
example of application is shown for an unsteady-state development of a recirculating circular cavity flow, 
the numerical results to which are in good agreement with those obtained analytically or by other numerical 
means. 
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1. INTRODUCTION 

In the numerical simulation of fluid flows, finite element methods have become greatly practicable 
in the past decade, probably in connection with the advantage of incorporating almost any 
complex boundaries and/or complex flow fields, and thus various techniques for practical 
application have been devised,'*2 whereas application of finite difference techniques, unless 
interpolation or extrapolation techniques are introduced for locations of boundaries, is originally 
limited mainly to problems for the spatial regions of which regular (not necessarily uniform) 
meshes can be generated or for the whole region of which a mapping (usually a conformal 
mapping) to a region possessing boundaries of geometrically simple shape is p ~ s s i b l e . ~  Thus the 
finite element procedures for numerical simulation of flow have penetrated into broad areas of 
fluid  mechanic^,',^,^,^ which has necessitated various matters to be discussed, such as error 
e ~ t i m a t i o n , ~ . ~  selection of the number and location of nodal points for better discretization in 
space, selection of the kind and degree of interpolation functions and weighting functions, and 
selection of dependent variables. Of these factors, selection of variables determines the form of 
a fundamental set of equations to be solved and consequently affects the nature of the other 
factors. For an isothermal laminar incompressible Newtonian fluid flow, a set of a velocity vector 
and pressure or a set of a stream function and vorticity (in the case of a two-dimensional/ 
axisymmetric flow) has been widely adopted as primitive dependent variables not only in a finite 
element procedure but in a finite difference procedure. Alternatively, use of a different set of 
dependent variables, i.e. a set of a velocity vector and a pressure gradient vector, has been 
proposed in finite difference  technique^;^,' such a method is called a pressure gradient method. 

So, in the current paper, concrete techniques and procedures for application of a pressure 
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gradient method to an FEM flow analysis are proposed with a special attention to the treatment 
of boundary conditions. Also given is an example of the analysis applied to an unsteady-state 
development of a recirculating circular cavity flow. 

ANALYSIS 

Formulation by ,finite element techniques using a pressure gradient method 

Although a pressure gradient method can be applied both in a two-dimensional flow and in 
a three-dimensional flow, as in the case of a finite difference method,' for simplicity notation 
is limited to the case of a two-dimensional isothermal laminar incompressible Newtonian fluid 
flow. Hereafter use is made of dimensionless quantities, that is, all the quantities that will appear 
have already been made dimensionless with respect to either the reference speed U o ,  the reference 
pressure p U $ ,  the reference length L, or the reference time LIU,, where p, U ,  and L denote 
the density of fluid considered, a characteristic speed in a flow field and a characteristic length 
in a flow field, respectively. Now, let a velocity vector V and a pressure gradient vector Vp be 
regarded as dependent variables. Then the equations to be solved are the equation of motion 

a 1 
at Re -v + (V.V)V = - v p  + -AV, 

the equation of continuity 

v-v = 0 

and the compatibility condition 

curl (Vp)=O, 

where Re denotes a Reynolds number and is defined as 

Re = pLUo/p, 

(3) 

p being the viscosity of the fluid, and to simplify the expression, only external body forces having 
a potential, such as gravity, are taken into account to be included in the pressure. As for division 
of space, triangular elements fixed in space are used, and nodal points, which are common for 
V and Vp, are assigned to every apex of each triangular element, as shown in Figure 1. Hereafter 
V and Vp are assumed to be vector fields of class C 2  and of class C' in space, respectively. 
Equations (1)-(3) can be integrated over a subspace consisting of triangular elements to give 

A s M , V d S +  dt s M , ( V . V ) V d S =  - s (4) 

Figure I .  Triangular element. Variables V and Vp are assigned to each apex of the element 
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M,V.VdS = 0, s 
M,curl(Vp)-dS = 0, s 

where the subspace is a simply connected region keeping inside one and only one apex common 
to all triangular elements belonging to the subspace; M,, M, and M, are weighting functions 
such that VMi(i = 1 ,2 ,3 )  is piecewise continuous and that M,(i = 1,2,3)  is continuous; and dS 
is an area vector normal to the surface element. By the Gauss theorem, equations (4) and (5) become 

g{M,VdS- dt S(VM,*V)VdS+ P M,(V.n)Vdc 

s = - sM1VpdSfE{  1 $M,(n.V)Vdc- (VM,.V)VdS 

M,V.ndc - VM,.VdS = 0, P I  
(7) 

respectively, where use is made of equation (2). By the Stokes theorem, equation (6)  becomes 

M,Vp.dc - (VM3 x Vp).dS = 0. P S  (9) 

In equations (7)-(9), dc and n denote a line-element vector along the contour of the domain of 
integration and an outward unit normal (parallel to the flow plane) at the contour, respectively, 
and dc=Idcl. All the more, if the Mis are chosen so that they vanish on the contour of 
integration, then equations (7)-(9) become 

!jM,VdS- dt S(VMl-V)VdS= - s M,VpdS-- Re ' S  (VM,.V)VdS, 

VM,*VdS = 0, 

s(VM, x Vp)-dS = 0, 

s 
respectively. 

Discretization of equation (10) 

replaced by 
Using a forward difference formula with respect to the time derivative, equation (10) can be 

'{( 6t SM,VdS) f + df - ( sMIVdS) f )  - (j(VM,-V)VdS) f 

under the assumption that triangular elements are fixed in space. In equation (1  3) the subscripts 
t and t + 6t denote the time when V or Vp appearing in each integrand is to be evaluated, and 
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6t (> 0) is a time increment between two successive time steps. When carrying out the integration 
in equation ( 1  3), V and V p  in each triangular element (including its contour) are supposed to be 
linearly interpolated in space in terms of linear shape functions, i.e. area co -o rd ina te~~ .~  and 
the values at nodal points as follows: 

3 

k =  1 
v =  N k V k ,  

where N k ,  vk and Vp,  denote an area co-ordinate, the velocity vector at a nodal point, and the 
pressure gradient at the nodal point, respectively, and the latter two vectors may be functions 
of time. Thus equation (13) can be completely discretized using values at nodal points. 

Discretization of the equation of continuity and the compatibility condition 

of continuity and the compatibility condition can be obtained through the following: 
Using the same interpolation expressions (14) and (15), the discretized forms of the equation 

( j V M 2 * V  dS) t + at = 0, 

( j ( V M 3  x V p ) - d S )  ?+at  = 0. 

Improvement of the discretized form of equation ( 1 6 )  

If M 2  is a polynomial function of one area co-ordinate that assume a value of unity when 
the point ( x , y )  coincides with the common nodal point xo, as shown in Figure 2, or of that 
co-ordinate followed by an arbitrary exponent ( > O ) ,  then the coefficient of V at xo vanishes 
identically in the discretized form of equation (1 6). This discretized form necessarily involves 
relative truncation errors, if the V,s  are exact, of the order of 

X’,X’ES 

where h is the characteristic length of the triangular elements and S is the domain of integration. 
Therefore, if without loss of generality it is assumed that M 2  - 1, instead of the discretized 

form of equation (16) the following form is recommended to obtain better numerical stability: 

Figure 2. Subdomain of integration. Shown is an example of a subspace consisting of six elements, xo being the location 
vector of the common nodal point and xi (i = 1,. . . ,6 )  being those of other nodal points 



APPLICATION OF A PRESSURE GRADIENT METHOD 355 

where V *  is a linearly interpolated velocity which is expressed as equation (14) in each triangular 
element; E, though small, is a parameter which may be a function of the location of the common 
nodal points; nv is a suitable unit vector in the x-y  plane; V k  and V o  denote the velocities at 
the nodal point xk and xo, respectively; summation on k is performed over the nodal points 
surrounding the point xo (as shown in Figure 2); and the P k S  are constants such that 

X O  = 0, 

although the combination of P k S  is not necessarily unique. 

Treatment of boundary values 

Internal pow. Discussions are limited to cases possessing solid boundaries and/or inlet and exit 
sections. At inlet and exit sections, mathematically it is necessary and sufficient to specify a 
velocity vector and a pressure gradient vector at any point as a function of time a priori in 
conformity with total mass balance, although it is rather difficult to concentrate the information 
outside to the inlet and exit sections virtually. On the other hand, at solid boundaries, only 
velocity vectors can be prescribed. Therefore it is necessary to introduce an expression for V p  
on the solid boundaries, which is formally obtained through equation (7), using the same finite 
element approximation as before by allocating a common nodal point on the boundary. In this 
procedure, however, relative errors having an order of the form (18) may be involved in estimating 
the first term of the left-hand side of equation (7), and since it is generally supposed that near 
the solid boundarv 

where S is the domain of integration, except near stagnation points, if any, the resultant 
formal expression will not give accurate information, and so this should be rejected. Alternatively, 
V p  at the point ( x o , y o )  on the boundary can be obtained directly from equation (1) as 

a 
Vp~xo,yo)  = ( - atV - (V-V)V + 

Thus V p  at a nodal point on the boundary can be obtained by introducing the derivatives 
of V there in terms of velocity vectors at neighbouring nodal points by a finite difference 
method as follows. Let (x i ,  y i )  (i = 1,2,3,4,5) be co-ordinates of nodal points in a flow field near 
the point (xo , yo ) .  Since V is assumed to be a vector field of class C2,  we obtain 

from which the derivatives of V at (xo ,  yo )  can be determined 
and V ( x i ,  y i )  (i = 1,2,3,4,5). 

(22) 

approximately in terms of V ( x o ,  yo )  
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External flow. An infinitely extended, multiply-connected external flow region can be replaced 
for a numerical analysis by a multiply-connected region enclosed by an arbitrarily set-up section 
far from solid boundaries. The treatment of values at  solid boundaries is the same as that in 
the previous section. Values of V and Vp at the arbitrarily set-up section far from solid boundaries 
can be specified a priori, probably being asymptotic with at least one parameter such as a 
drag coefficient, for which other relation(s) leading to the parameter(s) should be supplemented. 

System equations 

nodal point, consist of 
System equations, which determine all of the velocity and pressure gradient vectors at  every 

( I )  the discretized form of equation (13) using equations (14) and (15), constructed a t  every 
interior common nodal point (for the equation of motion) 

(2) equation (19), constructed at every interior common nodal point (for the equation of 
continuity) 

(3) the discretized form of equation (17) using equation (15), constructed at every interior 
common nodal point (for the compatibility condition) 

(4) specified boundary values for V and Vp (which may be supplemented with parameter(s)) 
(5) equations (21) and (22) for values of Vp at  nodal points on solid boundaries, 

being supplemented with initial conditions if any. 

Pressure field 

Pressure itself at a specified time satisfies a total differential equation 

dp = Vp.(dx, dy). (23) 
However, with the same accuracy as in equation (23), it would be proper to replace equation 
(23) by 

dp = b* pkVPk -k ( 1  - b*)vPo '(dx,dY), (24) 1 i k  

where /I* is a parameter; bk and superscripts k and 0 have the same meanings as in equations 
(19) and (20). Pressure itself can be obtained by integrating equation (24). 

Weighting function 

As for M the following form is possible: 

where m, f,, and N o  denote an arbitrary real number (> 0), any polynomial function such that 
f,(O) = 0, and an area co-ordinate such that it assumes a value of unity when the point (x, y) 
coincides with the common nodal point, respectively. The simplest form of equation (25) is 

M ,  = N ;  (m>O), (26) 
which will be used later. If the form (26) is used for M ,  and M , ,  then the discretized forms of 
equations (16) and (17) become independent of m. Therefore it is suitable to define M 2  and M ,  
as 

M2 = No,  (27) 
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M ,  = N o .  

In integration, use is made of the following formula: 

where integration is performed over a triangular element; A* denotes the area of the triangle; 
N , ,  N ,  and N ,  are three mutually different area co-ordinates. 

Solution procedure for the system equations 

If the flow field is unsteady, the system equations can be solved directly step by step with respect 
to time with initial conditions since the system equations are linear in V ( t  + ht)  and Vp(t  + ht), 
whereas, if the flow field is steady, the system equations constitute a system of simultaneous 
non-linear equations, which can be solved by means of a suitable method. 

AN EXAMPLE O F  THE ANALYSIS 
Flow configuration 

As an example the proposed finite element method using a pressure gradient method is applied 
to a two-dimensional, unsteady, recirculating, circular cavity flow in a horizontal plane: that is, 
Newtonian fluid enclosed in a circular cavity of radius unity is assumed to be initially at rest 
( t  < 0) and at t = 0 the portion corresponding to a fixed half boundary of radius unity suddenly 
starts to move at a constant speed unity in its own curved plane in the counterclockwise direction. 

Co-ordinate system 

To describe the motion, a cylindrical polar co-ordinate (r,O) with its origin at the centre of 
the cavity is used as well as a Cartesian co-ordinate system (x ,  y )  in the usual orientation with 
the same origin, and without loss of generality the moving boundary is assumed to be r = 1 ,  
- ~ e < o .  

Mesh generation 

Regular meshes are generated as shown in Figure 3, equally spaced in the circumferential 
direction and alternately shifted in a half pitch among radial positions, so that the two singular 
points, ( x  = 1 ,  y = 0) and (x  = - 1, y = 0), are not included among the nodal points. Besides, all 
the nodal points are located on concentric circles with equal spacing. 

Initial conditions and boundary conditions 

Initial conditions at t = 0 are expressed as 

v=o, for Irl < 1, 
v=o, for r = l , O < O < n ,  
V = ( - y , x ) ,  for r =  1, - z < O < O .  

Boundary conditions are 

v = 0, for r = l , O < O < n ,  
V = ( - y , x ) ,  for r = l , - z < O < O .  
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Figure 3. Meshes generated. Nodal points are assigned to all grid points 

Special treatment at the centre of the cavity 

Since the number of triangular elements commonly possessing the nodal points at the centre 
is much greater than that at other points, equation (19) and the discretized form of equation 
(17) at the centre would not give sufficiently good information, owing to their own forms, although 
they are necessary conditions within the precision of truncation errors. This does not apply to 
the case for the equation of motion, since not only a gradient of a weighting function but a 
weighting function itself are involved in equation (13). Therefore, at  the centre, equation (19) 
and the discretized form of equation (17) can be replaced by the continuity of a pressure gradient, 
i.e. 

(32) 
1 

(VP)CO,O) = 20 c (VPh 

where summation is performed over twenty nodal points surrounding the centre. In equation 
(32) truncation errors of order of h2 are involved. 

Numerical results 

Figures 4 and 5 show patterns of streamlines and isobars for Re = 100, t = 840/121 (m = 0.5, 
6.5 = 0.01, b* = 0.5, 6t = 20/121, h = 1 / 1 1 ,  n, = (0, l ) ) ,  where values of a stream function t,b are 
calculated directly by integrating the velocity component, for which in a three-dimensional 
vectorial notation 

V = curl (0, 0, $), (33) 
and the pressure itself is due to equation (24). Figures 6 and 7 show patterns of streamlines and 
isobars for Re = 100, t = 00 (m = 0 5 ,  6.5 = 0.01, b* = 0 5 ,  6t = 20/121, h = 1 / 1 1 ,  n, = (0, I ) ) ,  
which correspond to the steady-state flow patterns (obtained at sufficiently large time). 

DISCUSSION 

Comparison with results by  a finite element method and those by  finite dgerence 
methods for a creeping flow 
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Figure 4. Streamlines in an unsteady flow in a circular cavity at t = 840/121 (Re = 100) 

Figure 5. Isobars in an unsteady flow in a circular cavity at t = 840/121 (Re = 100) 

For creeping flows, as an asymptotic analytical solution for Re + 0, the stream function t,b and 
the pressure p can be expressed7 as 

r2 - ,,,-I( -) 2r sin 0 
271 1 - r 2  r l /=  - $ ( r 2 - 1 ) + -  

x exp (- P;kt/Re) sin (no),  ( t  > O), 1 (34) 
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Figure 6. Streamlines in a steady flow (Re = 100) 

Figure 7. Isobars at a sufficiently large time in a circular cavity, which correspond to those in a steady flow (Re = 100) 

where & k ( n  = 0,1,3,5,. . .) is the kth positive zero of the Bessel function J,, l(x) and p E  is the 
pressure at the centre of the cavity. Using equations (34) and (35), numerical errors mainly due 
to discretization can be estimated, and the error behaviour with time can be compared among 
methods (a finite element method where V and Vp are supposed to be dependent variables 
(V-p method), and a finite difference modified pressure gradient method' where V and 
Vp are supposed to be dependent variables); these are shown in Figures 8 and 9, where Ep and 
E ,  denote measures of pressure errors and velocity errors, respectively, and are defined as 
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Figure 8. Error behaviour of E, with time for different methods possessing the same parameters of common values (Re 
=0.001,&=2 x 10-4/121). V:m=025(thecurrentFEM), O:rn=0,5(thecurrent FEM), 0 : m  =0,75(thecurrent FEM), 
V : m = 1 (the current FEM), A : a finite difference method using a modified pressure gradient methods, A : a V-p method. 
Values of parameters ( E ,  h, p* and n,) used in the current FEM are the same as those corresponding to Figures 6 and 7 
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Figure 9. Error behaviour of E ,  with time for different methods possessing the same parameters of common values (Re 
= 0.001,6t = 2 x 10-4/121). V : m = 0.25 (the current FEM), 0 : m = 0.5 (the current FEM), 0 :m = 0.75 (the current FEM), 
V :m = 1 (the current FEM), A : a finite difference method using a modified pressure gradient method, A : a V-p method. 
Values of parameters ( E ,  h, p* and n,) used in the current FEM are the same as those corresponding to Figures 6 and 7 

where n* is the total number of points to be evaluated, and the subscripts num. and anal. mean 
'obtained numerically' and 'obtained analytically', respectively. In Figures 8 and 9, all the 
discretizing methods possess the same spatial division in a radial direction and the same time 
increment, and for the estimation of equations (36) and (37), pressure and velocity are evaluated 
at points over two concentric circles ( Y =  lO/ll, 6/11) (n* =40). As far as the current spatial 
division and time increment at a specified small value of Re are concerned, as in Figures 8 and 
9, the current finite element method produces errors a little greater than those of the finite 
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Figure 10. Comparison between results by a finite element method and a finite difference method using a pressure gradient 
method. 0 : ET, for Re = 10, 0 : E$ for Re = 100, A : Ex for Re = 10, A : E: for Re = 100. Values of parameters (6, h, b* and 
nv) used in the finite element method are the same as those corresponding to Figures 6 and 7. Values of 6t  are 10/121 for 

Re = 10 and 20/121 for Re = 100 

difference methods, though among the results by the finite element method the one using a 
power of m = 0.5 (or 0.25) is found to give relatively good results. 

Comparison with results at a moderate Reynolds number 

For a moderate Reynolds number flow in this configuration, no analytical solutions have 
been found, so that comparison is made between results by a finite difference method using a 
pressure gradient method and those by the current finite element method; these are shown in 
Figure 10, where EX and EC denote measures of pressure and velocity differences between the 
results, respectively, and are defined as 

1 
n EC - 

where the subscripts E and D denote ‘obtained by the current finite element method’ and 
‘obtained by finite difference method using the modified pressure gradient method’,’ respectively. 
In Figure 10, the situation for discretization in space is the same as in a creeping flow, and for 
the estimation of equations (38) and (39), pressure and velocity are evaluated at points over two 
concentric circles (r = 9/11, 5/11) (n* = 40). As far as pressure gradient methods are concerned, 
as shown in Figure 10 no remarkable differences between finite element methods and finite 
difference methods can be found. 

Effects of a parameter introduced in equation (19)  

Unless the absolute value of the parameter E in equation (19) is zero or too small, flow fields 
obtained using two different values of E are in quite good agreement with each other in the sense 
that the change of E by a factor of two produces variations in p and V (defined similarly as in 
equations (38) and (39)) of the order of - lop8 at a Reynolds number of 10. 



APPLICATION OF A PRESSURE GRADIENT METHOD 363 

CONCLUSION 

A pressure gradient method is applied to a finite-element-method flow analysis for a two- 
dimensional incompressible Newtonian fluid flow. Using triangular elements and by linearly 
interpolating the unknown vector fields, discretized system equations can be derived with suitable 
weighting functions possessing a parameter independent of other dimensionless parameters such 
as a Reynolds number. An example of numerical analysis of the system equations is presented 
for an unsteady-state development of a recirculating circular cavity flow, and the flow features 
obtained are found to be in good agreement with those obtained by other methods. 

N o ,  N ,  9 N 2 ,  N ,  
n V  
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& 
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NOTATION 

line-element vector along the contour of the domain of integration 
= ldcl 
area-element vector normal to the surface 
= ldSl 
defined in equation (36) 
defined in equation (38) 
defined in equation (37) 
defined in equation (39) 
characteristic length of a triangular element 
parameter introduced in equation (26) 
weighting functions 
outward unit normal (parallel to the flow plane) at the contour of the domain of 
integration 
area co-ordinates 
unit vector introduced in equation (19) 
pressure 
radial co-ordinate in a cylindrical polar co-ordinate system 
Reynolds number 
time 
velocity vector 
co-ordinate in a Cartesian co-ordinate system (parallel to the flow plane) 
co-ordinate in a Cartesian co-ordinate system (parallel to the flow plane) 
parameter introduced in equation (24) 
constant introduced in equation (20) 
time increment 
parameter introduced in equation (19) 
tangential co-ordinate in a cylindrical polar co-ordinate system 
stream function 
gradient operator 
Laplacian operator 
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